Double quantization of the regressor space for long-term time series prediction: method and proof of stability
نویسندگان
چکیده
The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the method both in the scalar and vectorial cases.
منابع مشابه
Forecasting the CATS benchmark with the Double Vector Quantization method
The Double Vector Quantization method, a long-term forecasting method based on the SOM algorithm, has been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis experimental results using the Dou...
متن کاملLong-Term Time Series Forecasting Using Self-Organizing Maps: the Double Vector Quantization Method
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecasting method specifically designed for long-term trends prediction, with a double application of the Kohonen algorithm. We also consider practical issues for the use of the method.
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 17 8-9 شماره
صفحات -
تاریخ انتشار 2004